Definitions and Formulas for Middle Level/Intermediate Mathematics

Notation	Description
$a \rightarrow b$	a implies b
$a \leftrightarrow b$	a if and only if b
$a \wedge b$	a and b
$a \lor b$	a or b
~a	not a
$A \cup B$	A union B
$A \cap B$	A intersect B
$ar{\mathcal{A}}$	complement of A
U	universal set
{}	empty set
$i = \sqrt{-1}$	imaginary unit
Z	complex conjugate of z
A ⁻¹	inverse of matrix A
v	vector v
~	is similar to
≅	is congruent to
	congruent angles
+ "	congruent sides
	parallel lines

Formula	Description
$V = \frac{1}{3}Bh$	volume of a right cone and a pyramid
$A = 4\pi r^2$	surface area of a sphere
$V = \frac{4}{3}\pi r^3$	volume of a sphere
$S_n = \frac{n}{2}[2a + (n-1)d] = n\left(\frac{a+a_n}{2}\right)$	sum of an arithmetic series
$S_n = \frac{a(1-r^n)}{1-r}$	sum of a geometric series
$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, r < 1$	sum of an infinite geometric series
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	distance formula
$(x-h)^2 + (y-k)^2 = r^2$	circle
$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$	variance
$s = r\theta$	arc length
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	quadratic formula
$A = P\left(1 + \frac{r}{n}\right)^{nt}$	compound interest
$_{n}C_{r}=\frac{n!}{r!(n-r)!}$	combinations
$_{n}P_{r}=\frac{n!}{(n-r)!}$	permutations
$\sin \theta = \frac{\text{opp}}{\text{hyp}}$	sine of θ in a right triangle
$\cos \theta = \frac{\text{adj}}{\text{hyp}}$	cosine of θ in a right triangle
$\tan \theta = \frac{\text{opp}}{\text{adj}}$	tangent of θ in a right triangle