

Formula	Description
$V=\frac{1}{3} B h$	volume of a right cone and a pyramid
$A=4 \pi r^{2}$	surface area of a sphere
$V=\frac{4}{3} \pi r^{3}$	volume of a sphere
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=n\left(\frac{a+a_{n}}{2}\right)$	sum of an arithmetic series
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$	sum of a geometric series
$\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r},\|r\|<1$	sum of an infinite geometric series
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	distance formula
$(x-h)^{2}+(y-k)^{2}=r^{2}$	circle
$s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$	variance
$s=r \theta$	arc length
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	quadratic formula
$A=P\left(1+\frac{r}{n}\right)^{n t}$	compound interest
${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$	combinations
${ }_{n} P_{r}=\frac{n!}{(n-r)!}$	permutations
$\sin \theta=\frac{o p p}{h y p}$	sine of θ in a right triangle
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$	cosine of θ in a right triangle
$\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$	tangent of θ in a right triangle

